22 research outputs found

    Planning and control of expandable multi-terminal VSC-HVDC transmission systems

    Get PDF

    Enabling the Existing Point-to-Point VSC-HVDC Control for Multi-Terminal Operation

    Get PDF

    Directional Derivative-Based Method for Quasi-Stationary Voltage Support Analysis of Single-Infeed VSC-HVDC units

    Get PDF
    This study presents an investigation of the impact of the quasi-stationary voltage support provided by a voltage source converter (VSC) connected to a single point of a power system. Based on the directional derivative concept, an analytical method is developed to quantify the sensitivities of the AC bus voltage with respect to the VSC reactive power control modes. Based on a real case study, it is shown that the method applies to VSC units that are part of VSC-HVDC systems, which can operate in a point-to-point or multi-terminal configuration. Time-domain simulations are performed to verify the findings from the application of the analytical method on a reduced size power system.</p

    Power Oscillation Damping Using Expandable VSC-HVDC Transmission System

    No full text

    Assessing Potential Scenarios for Achieving New and Renewable Energy Targets in Java-Bali Power System, Indonesia

    No full text
    Geographic circumstances, government policies, and power system characteristics face many countries struggling to achieve their new and renewable energy (NRE). In addition, one characteristic of renewable energy (RE) which cannot be moved is a severe problem for archipelagic countries like Indonesia in achieving their NRE targets. Therefore, this research creates a long-term open-source generation expansion planning (GEP) model that considers renewable energy integration between islands, government policies, and power system characteristics of Indonesia. The model proposes a high voltage direct current (HVDC) line to facilitate abundant energy transfer between islands. The research also included multiple scenario analyses based on the potential strategies that could realistically be applied. Based on the long-term GEP model results, possible alternative routes to achieving NRE targets are mapped and assessed by considering power system characteristics and national energy policies. Specifically, the Java-Bali system of Indonesia is employed as a case study to demonstrate the performance of the proposed long-term GEP model. The optimum planning to achieve the targets produces the generation cost of 7.05 cents USD/kWh and the CO2 emission reduction of 2,297 million tons of CO2
    corecore